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ABSTRACT 

While nicotine replacement therapy (NRT) is presumed to be a safer alternative to smoking 

in pregnancy, the long-term consequences in offspring are still largely unknown. Animal 

studies now suggest that maternal nicotine exposure during pregnancy and lactation (MNE-

PL) leads to a wide variety of adverse outcomes for the offspring, including increased 

adiposity. The focus of this study was to investigate how MNE-PL in rats may lead to liver 

dysfunction long-term in offspring through alterations in gene expression and epigenetic 

modifications. Postnatal day 180 (PND180) offspring exposed to nicotine during pregnancy 

and lactation (1mg/kg/day) exhibited increased circulating and hepatic triglycerides 

concomitant with increased expression of fatty acid synthase (FAS), an enzyme involved in 

hepatic de novo fatty acid synthesis. Furthermore, we demonstrate that MNE-PL offspring 

displayed increased protein expression of the Liver X Receptor α (LXRα), a key regulator of 

FAS. Chromatin immunoprecipitation revealed enriched binding of LXRα to the putative 

LXRE element on the FAS promoter in PND180 male offspring. This was associated with 

enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of 

chromatin activation. Collectively, these findings suggest that nicotine exposure during 

pregnancy and lactation leads to increased circulating and hepatic triglyceride levels long-

term via changes in transcriptional and epigenetic regulation of the hepatic lipogenic 

pathway. 

 

Keywords: Nicotine Replacement Therapy (NRT), Triglycerides, Fatty Acid Synthase 

(FAS), Liver, Liver X Receptor (LXR), Obesity, Fetal Programming  
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CHAPTER 1 : INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Nicotine  

1.1.1 Maternal smoking and obesity  

 Despite the well-established links between smoking during pregnancy and 

increased risk of placental complications (1), impaired fetal growth (2, 3) and perinatal 

mortality (2, 3), approximately 10-20% of Canadian mothers continue to smoke during 

pregnancy (4, 5). This translates to approximately ~75,000 babies born each year in 

Canada alone who were exposed to first hand smoke in utero (2, 5). Unfortunately, the 

global prevalence of tobacco smoking in young mothers continues to rise in low- and 

middle-income countries (6). In addition, over half of the women who are able to quit 

smoking during pregnancy will relapse within four months of delivery (7). If women 

cannot abstain from smoking during pregnancy, a recent meta-analysis of thirty 

prospective studies now suggests that their children have a 47% increase in the odds of 

becoming overweight (8). Since smoking during pregnancy is a highly modifiable risk 

factor, women are willingly predisposing their children to obesity at birth (9). It is 

noteworthy to mention that some studies have identified a higher risk of children being 

overweight if their mother was overweight prepregnancy (10). However, the association 

between smoking and childhood obesity was found to be unaffected by maternal diet, 

parental body size or gestational weight gain(11, 12). Therefore pathways independent of 

a mother’s lifestyle may be playing a role in the long-term health and disease risk in 

children. Numerous clinical studies have now found that adults exposed to smoking in 

utero have increased plasma triglycerides, a characteristic often associated with obesity 
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and the metabolic syndrome (13-16). This is of great concern considering that elevated 

plasma triglycerides levels are an independent risk factor that is significantly associated 

with cardiovascular (CV) disease (17, 18). Given that nearly one-third of Canadian 

children and youth (5- to 17- years old) are either overweight or obese (19), and the risk 

that elevated triglycerides pose (17, 18), it is clear that these situations warrant strategies 

for the prevention or reduction of hypertriglyceridemia.  

1.1.2 Nicotine replacement therapy (NRT) 

 Although cigarette smoking is one of the most important and modifiable risk 

factors leading to adverse obstetrical outcomes (2, 9), nicotine dependence still remains 

the driving force behind continued smoking behaviour (20-22). Consequently, nicotine 

replacement therapy (NRT) has been widely developed as an effective therapy for 

smoking cessation (20, 22). NRT provides a substitute source of nicotine that 

significantly reduces the symptoms of cigarette withdrawal including irritability, hunger 

and sleepiness (23, 24). NRT exists in various forms including gums, transdermal 

patches, nasal sprays, inhalers and lozenges that differ in route of administration and dose 

of nicotine (25). All NRT formulations are considered more effective as either the main 

or supportive therapy used, compared to placebo or no treatment in smoking cessation 

(26). The efficacy of NRT is largely based on the individual and will differ between 

people based on factors such as the setting in which NRT is administered, source of 

motivation for quitting and a smoker’s level of dependency on nicotine (27). A 

systematic review of studies evaluating the commercially available forms of NRT found 

that NRT alone increases the odds of smoking cessation 1.5 to 2-fold independent of 

additional support and setting (28, 29).  
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 It is important to give special consideration to pregnant women using NRT 

because of the harm nicotine exposure may pose for the developing fetus. Although NRT 

appears to be a safer alternative to smoking in pregnancy as the number of chemicals is 

reduced from 4000 to 1, there is little evidence validating this claim (30, 31). To date, 

there is insufficient data available on the effectiveness of NRT during pregnancy or on 

the potential risks it may pose (32). Despite this oversight, obstetricians continue to 

prescribe NRT in pregnancy, highlighting the urgent need to study both safety and 

efficacy of NRT in this population (33, 34). Moreover, understanding the long-term 

consequences of maternal nicotine exposure (MNE) in offspring can provide insight into 

determining a safe dose and management of NRT use in pregnancy.   

 In addition to the numerous health benefits of abstaining from smoking in 

pregnancy, prenatal smoking cessation therapies provide additional economic benefits. 

For instance, approximately every dollar invested in smoking cessation therapies can 

result in up to three dollars saved in costs from the prevention of neonatal complications 

and neonatal intensive care unit expenses (35).   

1.1.3 Pharmacology of nicotine  

 Nicotine (C10H14N2) is a weak base and a relatively lipophilic compound, which 

facilitates its ability to cross cell membranes in its unionized form (36-38). Accordingly, 

various forms of NRT are buffered in an alkaline pH for absorption by the body (36). In 

contrast to nicotine absorption from cigarette smoke, NRT results in a gradual absorption 

of nicotine and reduces the likelihood of abuse by users (36, 39). Nicotine is absorbed 

with high affinity in the brain, muscle, liver, lung, spleen and kidney (40, 41). Due to the 

biological nature of nicotine, it is able to cross the placenta and mammary glands leading 
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to the accumulation of nicotine in fetal serum and breast milk, respectively (42-45). 

Studies have demonstrated that human fetuses are exposed to higher levels of nicotine in 

the placenta, amniotic fluid and serum compared to levels measured in the maternal 

serum (46).  

1.1.4 Pharmacokinetics of nicotine  

 Nicotine is primarily metabolized in the liver and to a small degree in the lung 

and brain (36, 47-49). Phase I metabolism of nicotine is mainly via the C-oxidation 

pathway, which converts nicotine to cotinine. The C-oxidation pathway accounts for 

approximately 72% of total nicotine metabolism (50). C-oxidation begins with the 

conversion of nicotine to a nicotine ∆1’(5') iminium ion catalyzed by the liver cytochrome 

P450 2A6 (CYP 2A6) enzyme (51-53). Genetic variations of this gene are postulated to 

be the cause of inter-individual variability in nicotine metabolism (54). The nicotine ∆1’ 

(5') iminium ion is converted by an aldehyde oxidase, the main enzyme involved in the 

final step of the metabolism to cotinine (52, 55-57). Cotinine may be further metabolized 

into a variety of metabolites, including the largest single metabolite 3’-trans-

hydroxycotinine via CYP 2A6 (53). Nicotine and its metabolites undergo phase II 

metabolism through a variety of glucoronidation reactions that convert the parent 

substrates into more water-soluble compounds for excretion (36, 58-60). Finally, nicotine 

and its metabolites are eliminated predominantly through renal excretion and to a small 

degree in sweat and breast milk (61-64).  

 It is important to consider the changes in nicotine and cotinine clearance rates that 

occur during pregnancy. In pregnancy, nicotine metabolism increases by approximately 

50%, while nicotine absorption does not differ between pregnancy and postpartum (41, 



www.manaraa.com

5 

 

65).  Correspondingly, cotinine metabolism increases by 140% (65). The elevations to 

nicotine and cotinine metabolism in pregnant women are postulated to be a result of 

increased hepatic metabolism by CYP 2A6 concomitant with faster levels of 

glucuronidation (65). Although an increase in blood flow to the liver could explain an 

increase in nicotine metabolism, nearly no difference is found in blood flow to the liver 

during pregnancy (65). Therefore, increased clearance rates are likely due to an induction 

of drug metabolizing enzymes in the liver during pregnancy (65, 66). Further 

investigation is warranted to determine if the effective dosage of NRT should be 

increased in order to accommodate the physiological changes in pregnancy (65).  

1.1.5 Action of nicotine  

 Nicotine is a tertiary amine that binds to nicotinic acetylcholine receptors 

(nAChRs) found mainly in the brain, autonomic ganglia and at neuromuscular junctions 

(67). Upon binding, nAChRs undergo allosteric changes that increase their permeability 

to calcium ions and trigger the release of neurotransmitters such as acetylcholine, 

norephinephrine, dopamine, and serotonin (68). Specifically, the binding of nicotine to 

the α4β2 nAChR likely mediates nicotine dependency (69). The addictive nature of 

nicotine has been linked to the subsequent release of dopamine that leads to pleasurable 

experiences, mood modulation and stimulation (69). Nicotine addiction develops due to 

its positive reinforcing effects while avoiding withdrawal symptoms such as anxiety and 

stress (68).  
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1.2 Lipogenesis  

1.2.1 Overview of the development and functions of the liver 

 Liver development begins in endodermal cells in the ventral foregut that are 

specified for a hepatic fate. Through the coordination of a network of transcription 

factors, these cells express new genes such as albumin and α-fetoprotein that commit 

cells to develop into hepatoblasts. Hepatoblasts in the liver will bud and eventually 

differentiate into hepatocytes or bile duct cells. Hepatocytes, the primary cells of the 

liver, undergo extensive morphology and maturational changes before and after birth in 

both rodents and humans (70, 71).  

 The cells within the liver are highly organized in order to carry out a myriad of 

functions. In brief, blood enters the liver through the hepatic artery and leaves through the 

hepatic vein. Blood travels through the liver via sinusoids, which consist of small 

capillaries, lined with highly fenestrated endothelial cells to allow for the exchange 

between the bloodstream and hepatocytes. The structure of the liver allows for the 

compartmentalization of function depending on the location of hepatocytes. As a result, 

hepatocytes are able to carry out various metabolic pathways in distinct regions of the 

liver (71).  

 The liver possesses several vital functions in the body including the production of 

bile, detoxification of xenobiotic agents, breakdown of toxic endogenous compounds, 

maintenance of cholesterol homeostasis, regulation of gluconeogenesis and the synthesis 

and metabolism of lipids (71). 



www.manaraa.com

7 

 

1.2.2 The role of the liver and adipose tissue in lipogenesis  

 Lipogenesis is the synthesis of fatty acids and the subsequent formation of 

triglycerides, which mainly occurs in the liver and adipose tissue (72). Fatty acids can 

become oxidized or undergo esterification reactions to form triglycerides (73).  The liver 

maintains lipid homeostasis in part through a balance between lipid storage and lipid 

metabolism. The liver obtains free fatty acids from either lipolysis of adipose tissue or 

through de novo fatty acid synthesis (73). Interestingly, it has been shown that both de 

novo lipogenesis and reesterification of peripheral fatty acids contribute to the elevated 

levels of triglycerides observed in patients with abnormal lipid accumulation in the liver 

(74).   

 In addition to the liver, adipose tissue also plays a fundamental role in 

lipogenesis. Adipose tissue constitutes a large energy reservoir in the body that stores 

energy in the form of triglycerides that are absorbed from the circulation (75, 76). Almost 

90% of adipocyte cell volume is made up of lipid droplets consisting of fats, 

triglycerides, fatty acids, phospholipids and cholesterol (75). In response to lipid 

requirements by other tissues, triglycerides in adipose tissue are hydrolyzed and released 

into the bloodstream as free fatty acids and glycerol molecules (77). Although adipose 

tissue can undergo de novo lipogenesis, studies have shown that it does not greatly 

contribute to the maintenance of excess fat in obese patients (78). In contrast, enhanced 

hepatic lipogenesis has been found to contribute to increased triglyceride pools and 

maintenance of excess fat in obese patients (78).   
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1.2.3 Hepatic de novo lipogenesis  

 Lipid synthesis in the liver begins with the uptake of glucose through the glucose 

transporter 2 (Glut2) (79).  Once glycogen stores have been maximized, excess glucose is 

converted into triglycerides (80). Glucose enters the glycolytic pathway to form pyruvate, 

which then undergoes decarboxylation reactions by pyruvate dehydrogenase to form 

acetyl-CoA(81-84). Acetyl-CoA carboxylase (ACCα), a cytoplasmic enzyme, converts 

acetyl-CoA to malonyl-CoA, a committed step in fatty acid synthesis (85). Malonyl-CoA 

is essential for the production of long chain fatty acids such as palmitate and is a substrate 

for the fatty acid synthase (FAS) enzyme (85, 86). FAS catalyzes the conversion of 

palmitate to its major product palmitic acid through successive additions of malonyl-CoA 

to an acetyl-CoA molecule (87). Subsequently, stearoyl-CoA desaturase-1 (SCD-1) 

located in the endoplasmic reticulum (ER) converts palmitoyl- and stearoyl-CoA into 

monounsaturated fatty acids (MUFAs), palmitoleate and oleate, respectively (88). 

MUFAs undergo further desaturation and elongation reactions before becoming 

incorporated into various lipid products including triglycerides (Fig 1.2.3) (88).   

 Gene knockdown studies in mice have been used to elucidate the source of 

MUFAs used in triglyceride incorporation. Mice lacking SCD-1 were found to have 

approximately 60% lower liver and circulating triglyceride levels compared to 

heterogeneous mice (89). Notably, an exogenous source of MUFAs was unable to rescue 

the abnormal triglyceride profile in deficient mice, suggesting that endogenously 

synthesized MUFAs are the main substrate for hepatic de novo triglyceride synthesis 

(89). Given that endogenous MUFAs are formed in the ER, they are in close proximity to 

the enzymes involved in triglyceride synthesis. Therefore, endogenous MUFAs are more 
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1.2.4 The regulation of lipogenic genes   

 Nutritional status and hormones are well known regulators of lipogenesis. Studies 

examining the effect of nutrition supplementation in rats, have found that fasted animals 

have significantly lower FAS enzymatic activity in the liver compared to fed animals (92, 

93). Moreover, refeeding was shown to lead to an increase in absolute protein content of 

hepatic FAS by 30- to 50-fold in rats (93). Two major mechanisms have been considered 

linking nutritional status and the transcriptional regulation of lipogenesis. Firstly being 

that glucose itself is a substrate for lipogenesis, and secondly that glucose stimulates the 

release of insulin (72, 94).  

 Insulin has been identified as an important regulator of lipogenesis. 

Streptozotocin (STZ)-induced diabetic mice show that treatment with insulin resulted in a 

rapid restoration of FAS enzymatic activity and mRNA levels. Although the rates of FAS 

activity decreased over time, the induction of steady-state mRNA was maintained three 

days after insulin administration, demonstrating that insulin primarily stimulates the 

transcription of the FAS gene (92).  Insulin is able to exert its regulatory effect through 

the action of the transcription factor, sterol regulatory element-binding protein -1c 

(SREBP-1c). Studies in primary cultured rodent hepatocytes found that in the absence of 

insulin, SREBP-1c was not expressed. However, the addition of insulin led to an 

induction of SREBP-1c protein expression (95, 96).  Furthermore, in vivo studies have 

demonstrated that SREBP-1c deficient mice, exposed to either fasting-refeeding 

treatments or a prolonged high carbohydrate diet, situations during which SREBP-1c 

would be expected to be expressed, exhibited lower induction of lipogenic genes (97). 
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Therefore, SREBP-1c is crucial for mediating the regulatory effects of insulin on hepatic 

lipogenesis.  

 A multitude of regulatory mechanisms are necessary to maintain lipid 

homeostasis. Nuclear receptors such as the liver X receptor (LXR) are unique ligand 

activated transcription factors that are able to sense lipids and directly influence 

transcriptional regulation. Interestingly, LXR has been demonstrated to regulate SREBP-

1c and thus likely contributes to the control of hepatic lipogenesis as well. LXR deficient 

mice were found to have decreased hepatic SREBP-1c expression. When treated with the 

LXRα agonist, T0901317, LXR deficient mice did not exhibit an induction in hepatic 

lipogenic genes compared to control mice (98). LXR is considered an intermediary 

component of the insulin-sensing pathway as insulin treatment resulted in the induction 

of LXRα mRNA as observed in both in vitro and in vivo studies (99). LXR has a 

comprehensive regulatory role over many components of the lipogenesis pathway and 

will therefore be the primary focus of my thesis.  

1.3 The liver X receptor  

1.3.1 Overview of the liver X receptor  

 The liver X receptors (LXRα and LXRβ) are nuclear receptors that are involved 

in the regulation of cholesterol, lipid and glucose homeostasis (100).  LXR is located 

within the nucleus and heterodimerizes with the retinoid X receptor (RXR) upon 

activation (101). LXR is regarded as a permissive nuclear receptor as either LXR or RXR 

ligands can activate the dimer (102-104). Although LXRα and LXRβ isoforms share 

approximately 77% homology, they differ in their expression profiles (105).  LXRα is 
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predominantly expressed in the liver, intestines, kidney, spleen and testes (106), while 

LXRβ is ubiquitously expressed in the body (101, 106, 107). LXR/RXR heterodimers 

bind to specific LXR binding element motifs (LXRE) in the promoter of genes, which 

consist of direct repeats (DR-4) of the AGGTCA sequence separated by 4 nucleotides 

(101).  

1.3.2 LXR and cholesterol synthesis 

 The discovery of the endogenous activators of LXRα helped to elucidate the 

biological role of this nuclear receptor. Early studies demonstrated that oxysterols such as 

24(S)-hydroxy-cholesterol and 22(R)-hydroxycholesterol lead to the activation of LXRα 

(104, 108). Upon ligand binding, LXRα was observed to bind to the cholesterol 7α- 

hydroxylase promoter (CYP7A), the rate-limiting enzyme in cholesterol catabolism. 

These data provided early indication of the role of LXRα in cholesterol homeostasis, 

specifically the conversion of cholesterol to bile acid (104, 108, 109). Gene knockdown 

studies in mice have since demonstrated that when challenged with a cholesterol rich diet, 

LXRα deficient mice are unable to catabolize excess cholesterol and experience less bile 

acid synthesis compared to control mice. In addition, there was no compensatory effect 

by LXRβ, further confirming differential gene expression regulation by the LXR 

isoforms (110). Oxysterol binding to LXRα leads to the activation of other targets such 

as ATP-binding cassette transporter 1 (ABC1) and inhibits low-density lipoprotein 

receptor (LDLR) involved in cholesterol efflux and uptake, respectively (111-113). 

Therefore, LXRα was originally characterized as a cholesterol sensor in the maintenance 

of cholesterol homeostasis.  



www.manaraa.com

13 

 

 Interestingly, LXRα deficient mice also exhibited changes related to other hepatic 

pathways including fatty acid synthesis. Key enzymes and factors in the fatty acid 

biosynthetic pathway such as SCD-1, FAS and SREBP-1c, were down regulated in the 

liver of knockout mice. Furthermore, increased lipid deposits in the liver observed in the 

liver of deficient mice implicate a broader role of LXRα (110).  

1.3.3 LXR and fatty acid synthesis 

 In addition to SREBP-1c, LXRα has been implicated to play a direct role in 

hepatic fatty acid synthesis (114, 115). LXR deficient mice exhibited decreased plasma 

triglyceride levels and free fatty acids concomitant with depressed fatty acid synthesis 

rates between 60-80% (100). Studies using potent nonsteroidal LXRα agonists such as 

T09013177 and GW3965 have helped characterize the regulatory role of LXRα (115, 

116).  Notably, both synthetic agonists are highly selective for LXR α and β over several 

other nuclear receptors including, RXR and constitutive androstane receptor (CAR) (115, 

116). Small animal studies have demonstrated that treatment with T0901317 led to 

significant increases in plasma triglyceride levels, which was associated with an 

induction in the activity of FAS, ACCα, SCD-1 and SREBP-1c in mice and hamsters. To 

further elucidate the role of LXRα in fatty acid synthesis, LXR deficient mice treated 

with LXRα agonist found that animals exhibited blunted expression of fatty acid 

biosynthetic genes compared to wild type mice (115). Thus, another layer of fatty acid 

regulation by LXR was uncovered.  

 However, it remained unknown whether LXRα had a direct and separate 

regulatory role from SREBP-1c. An in vitro model demonstrated that the treatment of 
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TPH-1 macrophages with LXR agonists T0901317 or GW3965 led to the activation of 

LXR and increased FAS mRNA expression despite the active suppression of SREBP-1c 

expression (117). Moreover, a temporal relationship was observed in LXRα agonist 

treated mice as triglyceride levels increased with rising FAS gene expression. Therefore, 

it was determined that LXRα was able to directly activate FAS and contribute to 

increased triglyceride production in a SREPB-1c independent manner (117). From these 

experiments, an LXRE was identified between -669 and -655 base pairs (bp) in the rat 

FAS promoter, which is also highly conserved in humans (118). Similarly, SREBP-1c has 

also been shown to bind directly to highly conserved tandem sites between -71 and -54 

bp in the rat FAS promoter (119). With the existence of both binding sites, luciferase 

activity assays have demonstrated that the activation of both LXRα/RXR and SREBP-1c 

leads to the additive activation of FAS (117). LXRα has been established to directly and 

indirectly control hepatic fatty acid synthesis. 

 Likewise, LXR is able to directly target additional enzymes along the fatty acid 

synthesis pathway. Studies eliminating SREBP-1c expression, found that treatment with 

an LXR agonist in mice results in an increase in MUFAs and triglycerides via the 

activation of SCD-1 expression. Furthermore, researchers have identified an LXR 

binding site in the mouse promoter of SCD-1 between positions -1263 and -1248 bp 

(120). LXR can also directly interact with the promoter of ACCα between -101 and -71 

bp. Similarly, LXR agonist treatment led to an increase in ACCα mRNA expression 

independent of SREBP-1c binding in chick embryos (121). This is of importance as 

changes in ACCα expression are vital in overall triglyceride levels (121). In summary, 
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LXR-mediated changes in fatty acid synthesis can lead to significant downstream 

alterations in triglyceride levels.  

1.3.4 LXR and glucose regulation  

 In contrast to the activating role of LXR in cholesterol and fatty acid homeostasis, 

LXR plays a suppressive role in the regulation of hepatic glucose metabolism (122).  

Studies have demonstrated in mice treated with LXR agonist GW3965, resulted in the 

upregulation of hepatic lipogenic targets while repressing peroxisome-proliferator 

activate-receptor coactivator-1 (PGC-1), a transcriptional coactivator necessary for the 

activation of a plethora of hepatic gluconeogenic genes (123, 124). While my thesis 

focuses mainly on fatty acid synthesis, LXR activation can lead to coordinated glucose 

regulation in adipose tissue and skeletal muscle (122, 125). Studies demonstrate that 

GW3965 treated mice exhibit increased Glut4 mRNA levels in adipose tissue, while 

T0901317 treatment in human myotubes leads to increased glucose uptake (122, 125). 

Together, these studies suggest that LXR activation helps to maintain glucose levels by 

promoting peripheral glucose uptake while suppressing gluconeogenesis in the liver. 

LXR may be the key link in the control of lipid and glucose metabolism whereby LXR 

limits the production of glucose in the liver while promoting glucose uptake and 

stimulating de novo lipogenesis for storage of excess energy as triglycerides in adipose 

tissue (122). Furthermore, treatment with an LXR agonist has been shown to improve 

glucose tolerance in mouse models of obesity and insulin resistance (122). Although 

modulation of LXR activity would appear to be a promising therapy for the treatment of 

diabetes and hyperglycemia, it is important to resolve and balance the impact of LXR 

regulation on fatty acid and cholesterol homeostasis as well.  
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1.4 Epigenetics  

1.4.1 Overview of epigenetics  

 In recent years epigenetics has emerged as a dynamic form of regulation that 

relies on the information that is held in how the genome is packaged. Although various 

definitions of epigenetics have been put forth, it is broadly defined as the structural 

adaptations of chromosomal regions that can signal altered states of activity (126). 

Therefore, transcription can be turned “on” or “off”, depending on the packaging of 

genes (127).  

DNA is wrapped around an octamer of histones, consisting of two copies of 

histones H2A, H2B, H3 and H4 to form a nucleosome, the main packing element of 

genomic DNA (128, 129). DNA binding to histones is facilitated through an electrostatic 

interaction between the positively charged peptides and negatively charged DNA 

backbone (130). Nucleosomes are linked together by 10 to 60 bp of DNA that are 

associated with histone H1 to form higher order chromatin structures (131). Histones 

possess N- (NH2-) and C-terminus (COOH-) tails that emanate out of the nucleosome 

and are susceptible to covalent modifications such as methylation, acetylation, 

phoshorylation, ubiquinitination and ADP-ribosylation (127, 131, 132). Alterations to 

histones can lead to large functional modifications in transcription, revealing a “histone 

code” that confers states of transcriptionally silent heterochromatin and active 

euchromatin (127, 133, 134).  
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1.4.2 Histone acetylation 

 One of the first pieces of evidence of the histone code 
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that an increase in histone acetylation preceded an increase in RNA and protein synthesis 

in human lymphocytes (135)

transition to transcriptionally active chromatin by increasing the accessibility of gene 

templates to transcription factors, which are inhibited by the structure of the nucleosome
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reducing the number of positive charges and disrupting the uniform charge distribution of 

Fig. 1.4.1 Overview of the role of posttranslational histone modifications (acetylation 

and methylation) in transcriptional regulation 

Histone acetylation  

One of the first pieces of evidence of the histone code was demonstrating that

ylation results in an increase in RNA synthesis (133). Early studies observed 

that an increase in histone acetylation preceded an increase in RNA and protein synthesis 

(135). Histone acetylation has since been found to dictate the 

transition to transcriptionally active chromatin by increasing the accessibility of gene 

templates to transcription factors, which are inhibited by the structure of the nucleosome

in the absence of acetylation (136). Histone acetylation increases accessibility by 

reducing the number of positive charges and disrupting the uniform charge distribution of 

Overview of the role of posttranslational histone modifications (acetylation 

and methylation) in transcriptional regulation  
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positively charged lysine and arginine residues of histone amino tails (130). For that 

reason, the stability of DNA wrapped around peptides has been found to be five times 

less stable and possess a greater number of uncoiled base pairs compared to non-

acetylated peptides (130, 137). Histone acetylation commonly occurs on the N-terminal 

of histones H3 and H4, as studies have demonstrated that replacement of N-terminal 

residues silences the effects of histone deacetylases (HDAC) (138-140). Histone 

deactylases such as the family of sirtuin enzymes facilitate the removal of acetyl groups 

and contribute to the formation of heterochromatin (141).  

 Among the known posttranslational modifications, acetylation and deacetylation 

have garnered the most attention (142). Enzymes, namely histone acetyltransferases 

(HAT), are responsible for the acetylation of histone tails. HATs were found to possess 

domains that were homologous for yeast adaptor proteins indicating that 

acetyltransferases are also recruited in a gene specific manner (143, 144). HATs are 

classified based on their function: A-type are involved in transcription whereas B-type 

are involved in nucleosomal assembly. For example, p300/CBP are A-type HATs that 

have been found to interact with many DNA-binding transcriptional factors (145).  

1.4.3 Histone methylation  

 Histone methylation is a common posttranslational modification that is commonly 

associated with the inhibition of gene expression (146). Histone methylation mediates 

transcriptional silencing by acting as a signal for the recruitment of repressive complexes 

that leads to deacetylation (147, 148). Methylation commonly occurs at lysine or arginine 

residues on histones H3 or H4 in a mono-, di- or tri-methylated manner (149). Since the 

discovery of histone methylation as a regulatory signal, several histone 
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methyltransferases (HMT) have been characterized. For example, the human SUV39H1  

possesses catalytic activity and demonstrates site preference for methylation at the N-

terminal of histone H3 (150).   

1.4.4 Epigenetics and fetal programming  

 To date, there is very little data on the epigenetic regulation of LXR target genes. 

However, studies have begun to reveal evidence of altered gene activation due to 

posttranslational histone modifications. Treatment of chick embryos with LXR agonist 

T0901317 led to a direct increase in ACCα mRNA expression increased LXR binding to 

the LXRE within the 5’ upstream region of ACCα and enhanced acetylation of histone 

H3 (151). In a similar fashion, treatment with T0901317 in human hepatocellular 

carcinoma cell line (HepG2) led to an enrichment of histones H3 and H4 acetylation at 

the LXRE of the FAS promoter. Further experiments showed that histone acetylation was 

diminished in LXRα deficient cells, suggesting that LXRα expression was required for 

these histone modifications (152). Although lipogenic genes can be subjected to 

posttranslational histone modifications, it has yet to be concluded if chromatin 

remodeling is associated in models of fetal programming. Our laboratory has begun to 

shed light on permanent epigenetic changes due to insults during perinatal life. We have 

previously shown that maternal protein restriction (MPR) through pregnancy and 

weaning leads to long-term hypercholesterolemia in rat offspring as a result of impaired 

Cyp7a1 expression, an LXR target gene (153). This decreased Cyp7a1 expression was 

influenced by diminished acetylation and increased methylation at the LXRE of the 

Cyp7a1 gene, promoting a repressive chromatin environment that persisted into 

adulthood (153). Recently, we have also shown that MPR during pregnancy alone leads 
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to the suppression of LXRα expression long-term due to decreases in the acetylation of 

histone H3 [K9,14] and RNA polymerase II recruitment surrounding the proximal 

promoter (-144 to +134 bp) of the LXR gene (154). Additionally, our laboratory has 

explored the posttranslational modifications that occur in response to maternal hypoxia 

during gestation in rat offspring. We demonstrated that maternal hypoxia led to decreased 

glucose-6-phosphatase (G6Pase) mRNA and protein expression, concomitant with 

increased methylation of histone H3 [K9] at the LXRE of the G6Pase promoter in 12 

month old rat offspring (155). Our work supports that multiple models of fetal 

programming are associated with posttranslational histone modifications of hepatic LXR 

target genes and will continue to be explored in our model of MNE.  

1.5 Developmental origins of health and disease (DOHaD)  

1.5.1 History of DOHaD 

 Epidemiological data has demonstrated that poor fetal growth is strongly 

correlated with various long-term developmental alterations in offspring including 

increased risk for cardiovascular disease (156), high blood pressure (157), type two 

diabetes (158, 159), and raised fasting serum triglyceride levels (160). It is important to 

note that these relationships were found independent of confounding factors such as 

alcohol consumption and social class of mothers, strengthening the studies supporting 

DOHaD.   

 Early evidence of DOHaD in humans was observed during the Dutch famine, an 

acute period of exposure to suboptimal nutrition. Studies examining this period of history 

discovered that children exposed to poor nutrition in utero experienced decreased glucose 

tolerance in later life (161). Similar studies in England found that low birth weight was 
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associated with an increase in mortality from CV disease in adulthood (156, 162). 

Growing evidence has supported the idea that developmental adaptations made in utero, 

may lead to permanent changes or “programming” of the body (163). To help 

characterize this phenomenon, Hales and Barker put forth “The Thrifty phenotype 

hypothesis”. They proposed that the in utero environment provides cues of the postnatal 

environment for the fetus, which causes the fetus to make thrifty adaptations for survival. 

However, these once advantageous changes become detrimental if the postnatal 

environment differs from the cues established in utero (158).  

 Since the conception of DOHaD, a wide range of adverse intrauterine 

environments including alterations in oxygenation and hormone levels have been linked 

to increased incidence of CV and metabolic disease in adult life (164).  

1.5.2 Models of fetal programming  

 Animal models have helped to elucidate the mechanisms underlying DOHaD, and 

shed light on the nature of the insult, timing and duration that lead to specific 

physiological outcomes (164). Rodent models have demonstrated that even minor 

changes in protein intake throughout pregnancy and lactation can lead to long-term 

hypercholesterolemia in rat offspring (153). Furthermore, our laboratory has 

demonstrated that MPR during gestation alone results in glucose intolerance in later life 

(165). These studies revealed that the manifestation of features of the metabolic 

syndrome in offspring does not solely rest on the type of insult, but the duration of the 

insult in perinatal life. Other nutritional insults explored in animal models of fetal 

programming include iron deficiency, high fat diet and micronutrient deficiencies (166-

168).  
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 Stress-related increases in glucocorticoids during pregnancy have been linked to 

low birth weight and higher fasting plasma glucose levels in adult rat offspring (169, 

170). Long-term programming, studies have demonstrated that 20 year old individuals, 

who were all low birth weight, had higher cortisol levels compared to individuals who 

were deemed appropriate weight for gestational age (171). This suggests that the 

hypothalamaus-pituatary–adrenal axis could be susceptible to programming changes in 

utero (171).  

 Hypoxia is a common consequence of placental insufficiency and has also been 

implicated in the fetal programming of adult disease (172). Chronic maternal hypoxia 

exposure in a rodent model has been shown to lead to decreased relaxation of mesenteric 

arteries and increased risk for ischemic injury in adult life (173, 174). In concordance 

with hypoxia-induced CV dysfunction, maternal hypoxia can also lead to permanent 

impairments in glucose homeostasis. Livers of adult male rat offspring exposed to 

hypoxia during gestation alone exhibited decreased G6Pase expression, an enzyme 

necessary for the progression of the glycolytic pathway (155, 175). Consequently, 

exposure to chronic maternal hypoxia can predispose offspring to a variety of disorders in 

adulthood.  

 Although catch-up growth may not be a tangible in utero insult, it is nonetheless a 

contributor to the fetal programming phenomenon. Catch-up growth is defined as a 

child’s return to their genetic growth trajectory after experiencing a period of slowed 

growth (176). For example, following MPR in rats, offspring that are fed a high caloric 

diet in postnatal life have a propensity to catch up in weight and then continue to become 

overweight compared to control rats (177).  Similarly, children who experienced catch up 
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growth between the ages of 0 and 2 years old, were more likely to have increased body 

mass index (BMI) and fat mass at 5 years of age compared to other children their age 

(176). Although it is generally accepted that regardless of age, an association exists 

between rapid growth and being overweight as an adult (178), the underlying molecular 

mechanisms are not well characterized.  

 In summary, human and animal studies have clearly established that physiological 

changes that occur in response to the maternal environment in fetal and neonatal life can 

impact an individual’s health long-term. Further understanding of the critical windows of 

DOHaD could lead to novel therapies for the prevention of a variety of adult onset 

diseases.  

1.5.3 Fetal programming models of MNE 

 Animal models of MNE have been critical in understanding the effect of nicotine 

exposure alone. Numerous studies on both smoking and nicotine have explored 

alterations in brain, lung and reproductive outcomes in offspring (179-184). More 

recently, MNE studies indicate that nicotine alone could be linked to the development of 

features of the metabolic syndrome such as obesity (185).  

 Given the neurological risks observed in children of smoking mothers, animal 

models have been imperative in investigating this underlying association. Rats exposed to 

the equivalent amount of nicotine as smoking 3 packs per day via an osmotic pump, 

exhibited a decrease in the number of rat fetal brain cells. Furthermore, it was found that 

exposure to nicotine resulted in a delay in cerebellum maturation in rat offspring (186). 

Using a similar method of nicotine delivery during pregnancy, one study observed an 
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increase in the stimulation of cholinergic activity in the cerebral cortex of rat offspring 

(187). This increased activity may lead to premature stimulation and disruptions to the 

normal timing of postnatal brain development (187). In conjunction with developmental 

impairments, prenatal nicotine exposure has been shown to influence behavioural 

outcomes in offspring as well. Rat offspring exposed to nicotine in utero, were observed 

to be more anxious and poorer adaptors compared to control offspring at PND45 (188). 

These studies link nicotine as a critical component of cigarette smoke to the development 

of neurological impairments in children exposed to smoke during pregnancy.   

 Children of smoking mothers also share strikingly similar compromises in lung 

development and function observed in animal models of MNE (189). In rhesus monkey 

and rodent studies of MNE during pregnancy, offspring were observed to have increased 

collagen deposition around large airways, a potential precursor to lung fibrosis, in 

newborn and 3 month old offspring, respectively (189, 190). Newborn monkeys exposed 

to nicotine in utero also suffered significant impairment to lung development, decreased 

function capacity and increased pulmonary resistance.   

 Interestingly, epidemiological evidence has now linked in utero exposure to 

tobacco and the development of obesity in children (191). A variety of windows of 

nicotine exposure have resulted in a spectrum of obese-related outcomes in offspring. 

Nicotine exposure during pregnancy via the implantation of nicotine osmotic minipumps 

in rats led to both early- and long-term alterations in rat offspring. During early neonatal 

life, MNE rat offspring exhibited increased white adipose tissue and adipocyte 

hypertrophy. Subsequently, these offspring continued to develop insulin resistance in 

adulthood (185).  
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 Notably, our rat model of maternal nicotine exposure during pregnancy and 

lactation (MNE-PL) has already been found to lead to increased bodyweight, adiposity, 

blood pressure, β-cell loss, impaired fecundity and glucose homeostasis long-term in 

offspring (192-196). Importantly, this animal model is highly relevant to the human 

population as the amount of nicotine used is equivalent to the amount of nicotine children 

of average smokers are exposed to (192). In our rat model of MNE-PL, the dose of 

nicotine results in maternal cotinine concentrations comparable to moderate smokers (80-

163ng/ml) and concentrations of cotinine measured in offspring that are within the range 

(5-30ng/ml) observed in infants nursed by smoking mothers (192, 197, 198). 

Furthermore, previous studies of this model of MNE-PL found there was no effect on 

maternal food intake, eliminating maternal obesity as a confounding variable in the long-

term programming of metabolic dysfunction in rat offspring (10, 192).  

 Surprisingly, some nicotine-induced developmental changes have been 

transgenerational. Second-generation offspring of dams exposed to nicotine during 

pregnancy and lactation, developed perturbations in blood pressure and insulin levels 

despite the fact that these offspring were not directly exposed to nicotine themselves 

(194, 199).  In humans, limited data exists on the impact of a mother’s exposure to 

smoking in utero on her children. One study has demonstrated that a smoking mother 

exposed to smoke in utero, is more likely to have a lighter child compared to a smoking 

mother who had not been exposed to smoke in utero (200). 

1.6 Thesis hypothesis and objectives  

 Smoking during pregnancy is associated with numerous fetal and neonatal 

complications short-term, along with increased risk of adult-onset diseases. While 
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nicotine replacement therapy is widely prescribed in pregnancy as a pharmacotherapy for 

smoking cessation, there is little information to date on the effects of maternal nicotine 

exposure on long-term diseases processes. Animal studies suggest that nicotine exposure 

alone during fetal and neonatal life may increase the risk of dyslipidemia and obesity in 

postnatal life. This study aimed to investigate the permanent changes in liver function, 

which may mediate in part the etiology of metabolic dysfunction rat offspring exposed to 

nicotine during pregnancy and lactation.  

Hypothesis:  

 We hypothesize that maternal nicotine exposure during pregnancy and lactation 

will lead to long-term liver dysfunction in the offspring.  

Objectives:  

1) To determine whether maternal nicotine exposure during pregnancy and lactation leads 

to changes in expression of hepatic fatty acid biosynthetic enzymes in rat offspring.  

2) To examine the underlying transcriptional mechanisms and posttranslational histone 

modifications that may be involved. 
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CHAPTER 2 : MATERIALS AND METHODS 

2.1 Maternal nicotine exposure during pregnancy and lactation (MNE-PL) animal 

model  

2.1.1 Animal care and drug administration  

 All animal experiments were performed at McMaster University and were 

approved by the Animal Research Ethics Board at McMaster University, in accordance 

with the guidelines of the Canadian Council for Animal Care. Nulliparous female Wistar 

rats (200-250g, Harlan, Indianapolis, IN, USA) were randomly assigned to receive daily 

subcutaneous injections of saline (vehicle) or nicotine bitartrate (1mg/kg/day, Sigma-

Aldrich, St. Louis, MO, USA) for 2 weeks prior to mating, during pregnancy until 

weaning (PND21) as previously described (195, 201). This dose of nicotine has been 

previously shown to lead to cotinine concentrations in maternal serum (135.9±7.86 

ng/ml) that fall within the range reported of “moderate” female smokers (80-163ng/ml) 

and in serum cotinine concentrations (26.2±1.78 ng/ml) in offspring, that are comparable 

to the range (5-30 ng/ml) found in infants nursed by smoking mothers (45, 192, 195, 

198). Dams were allowed to deliver normally and at PND1 all litters were culled to eight. 

At PND1 and PND21, subsets of male offspring were sacrificed by CO2 inhalation for 

body weight measurements and liver tissue collection. All animals were weighed at 

necropsy. Livers were snapped frozen in liquid nitrogen and stored at -80°C until 

molecular analysis.  
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A third subset of offspring were caged as sibling pairs and at 

rats were fasted overnight and sacrificed by CO

measurements. Livers were snapped frozen in liquid nitrogen and stored at 

molecular analysis. Blood was collected, allowed to clot, spun and serum was stored at 

80°C until analysis (Fig. 2.1.1)

 

 

 

Fig. 2.1.1 Overview of animal model of maternal nicotine exposure during 

pregnancy and lactation. 

saline (vehicle) for two weeks prior to mating until weaning. Offspring were 

sacrificed at PND1, 21 and 180 for analysis.

A third subset of offspring were caged as sibling pairs and at PND180, 

night and sacrificed by CO2 inhalation for body weight 

Livers were snapped frozen in liquid nitrogen and stored at 

molecular analysis. Blood was collected, allowed to clot, spun and serum was stored at 

(Fig. 2.1.1). 

Fig. 2.1.1 Overview of animal model of maternal nicotine exposure during 

pregnancy and lactation. Pregnant rats were administered nicotine bitartrate or 

saline (vehicle) for two weeks prior to mating until weaning. Offspring were 

1, 21 and 180 for analysis.    
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 male and female 

on for body weight 

Livers were snapped frozen in liquid nitrogen and stored at -80°C until 

molecular analysis. Blood was collected, allowed to clot, spun and serum was stored at -

Fig. 2.1.1 Overview of animal model of maternal nicotine exposure during 

Pregnant rats were administered nicotine bitartrate or 

saline (vehicle) for two weeks prior to mating until weaning. Offspring were 
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2.1.2 Plasma and hepatic lipid measurements  

 Total cholesterol, triglyceride and glucose levels were measured from blood and 

hepatic tissue samples using Cobas® analyzer at the Metabolic Phenotype Laboratory at 

Robarts Research Institute (London, Ontario, Canada). Briefly, triglycerides are 

hydrolyzed by lipoprotein lipase to glycerol and fatty acids. Glycerol is then 

phosphorylated to glycerol-3-phosphate by ATP in a reaction catalyzed by glycerol 

kinase (GK). The oxidation of glycerol-3-phosphate is catalyzed by glycerol phosphate 

oxidase (GPO) to form dihydroxyacetone phosphate and hydrogen peroxide (H2O2). In 

the presence of peroxidase, H2O2 alters the oxidative coupling of 4-chlorophenol and 4-

aminsophenazone to form a red-colored quinoneiminse dye, which is measured at 512 

nm. The increase in absorbance is directly proportional to the concentration of 

triglycerides in the sample. 

2.2 Molecular analysis  

2.2.1 Quantitative real-time polymerase chain reaction (qRT-PCR) 

 Total RNA from male and female liver tissue was extracted at PND1, PND21 and 

PND180 by the one-step method described by Chomczynski and Sacchi  (202). RNA was 

treated with deoxyribonuclease to remove any contaminating DNA. 4µg of the total RNA 

was reverse transcribed to cDNA using random primers and Superscript II RNase H-

reverse transcriptase (Invitrogen, Carlsbad, CA, USA). Primer sets directed for the genes 

of interest (FAS, ACCα, SCD-1, SIRT-1, p300) were generated using 

OligoPerfect™Designer (Invitrogen, Carlsbad, CA, USA) (Table 2.2.1).  The Bio-Rad 

CFX384 Real Time System was employed to determine quantitative mRNA expression 

using the DNA binding dye SsoFast™ EvaGreen® Supermix (Bio-Rad, Mississauga, 
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Ontario, Canada). The cycling conditions were as follows: 50°C for 2 mins, 95°C for 10 

mins, followed by 45 cycles of 95°C for 15 sec, and 60°C for 1 mins. The cycle threshold 

was set at a level where the exponential increase in PCR amplification was roughly 

corresponding between all samples. The relative fold changes were calculated using the 

comparative cycle times (Ct) method with β-actin as the reference gene. All primer sets 

were demonstrated to have good linear correlation (slope≈-3.4) strongly suggesting equal 

priming efficiency (data not shown). ∆Ct values for each primer set were calibrated to the 

experimental samples with the lowest transcript abundance (highest Ct value). The 

relative abundance of each primer set compared with calibrator was determined by the 

formula, 2∆∆Ct, in which ∆∆Ct is the calibrated Ct value. 

Table 2.2.1 Primer sequences for quantitative real-time PCR analysis  

Gene Primer (5’-3’) Reference No. 

FAS FWD GGA CAT GGT CAC AGA CGA TGA C 

REV  CGT CGA ACT TGG ACA GAT CCT T 

X62889.1 

ACCα FWD TCC GTA TGT GAC CAA AGA CC 

REV  TAC GTT GTT CCC AAG GAC TG 

NM_022193.1 

SCD-1 FWD GCT TGT GGA GCC ACA GGA CTT AC 

REV  ATC CCG GGC CCA TTC ATA TAC 

NM_031841.1 

p300 FWD AGC GAG CTT ATG CTG CTC TC 

REV GGC ACT CAT GTT GTT CAT GG 

NW_001084859.1 
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2.2.2 Protein extraction and western immunoblotting analysis 

 Tissue protein was extracted from snap frozen liver samples using RIPA lysis 

buffer solution (50 mM Tris-HCl, pH 7.4, NP-40 1%, Na-deoxycholate 0.25%, 150 mM 

NaCl, 1mM EDTA, 50 mM NAF, 1mM NaV, 25 mM β-glycerophosphate) and a 

protease inhibitor (Roche). The liver sample was placed in 600 µl of RIPA lysis buffer 

and homogenized with an IKA T10 Basic S1 Dispersing Tool (IKA Works Inc, 

Wilminsgton, NC). The homogenates were placed on ice for 5 mins before rotation at 

4°C for 10 mins. The homogenates were subsequently centrifuged at 300 g for 15 mins at 

4°C. The supernatant was transferred to fresh tubes and centrifuged at 14 000 RPM for 

20 mins at 4°C. The supernatant was retained as the protein preparation. Equal 

concentrations of total protein were normalized using a colorimetric BCA Protein Assay 

(Pierce Corp., Madison, WI, USA). Each loading sample contained 30 µg of protein.  

Samples were fractionated in gradient polyacrylamide gels (Invitrogen, Carlsbad, CA, 

USA) and transferred onto polyvinylidenefidluoride membrane (Millipore, Etobicoke, 

Sirt1 FWD AGC TGG GGT TTC TGT TTC CT 

REV CTG GTT ATG CTC TTG GTG TCT TTC 

NC_005119.3 

β-actin  FWD CAG CCT TCC TTC CTG GGT AT 

REV AGG AGC CAG GGC AGT AAT TCT 

NM_031144.3 
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Ontario, Canada). Blots were probed with FAS (catalog no. 3180S 1:1000, Cell 

Signaling), ACCα (catalog no. 3662S 1:1000, Cell Signaling), LXRα  (cat. no.sc-13068 

1:5000, Santa Cruz Biotechnology), SREBP-1c (catalog no. sc-366, Santa Cruz 

Biotechnology), p-ACCα (catalog no.3661P 1:1000, Cell Signaling) antibodies, and 

monoclonal horseradish peroxidase-conjugated β-actin was used as the housekeeping 

protein (catalog no. A3854 1:50000, Sigma-Aldrich). All antibodies were diluted in 5-7% 

milk-1xTris-buffered saline-Tween 20 (0.01%) buffer. Horseradish peroxidase 

conjugated donkey anti-rabbit IgG (catalog no. 711035152 1:10000, Jackson 

ImmunoResearch Laboratories, West Grove, PA) or horseradish peroxidase conjugated 

donkey anti-mouse IgG (catalog no. 715001003 1:50000) diluted in 5-7% milk-1xTris-

buffered saline-Tween 20 (0.01%) were used as the secondary antibodies. 

Immunoreactive bands were detected using an enhanced chemiluminescence detection 

system (Thermo Scientific, Waltham, MA) and imaged with a VersaDoc Imaging System 

(BioRad). Densitometry analysis was performed using Image Lab Software (BioRad).  

2.2.3  Chromatin immunoprecipitation (ChIP) 

 Chromatin was extracted from liver tissues excised from PND180 male offspring 

as previously described (153). In brief, a small piece of snap frozen liver was 

homogenized in 0.5 mL of 1% formaldehyde and fixed for 10 mins at room temperature 

to cross-link proteins and DNA. Glycine (0.125M, final concentration) was added to all 

samples to terminate cross-linking. Samples were microfuged at 3000 RPM at room 

temperature for 5 mins and supernatant was subsequently discarded. Samples were then 

washed once with cold PBS and spun at 3000 RPM. Supernatant was discarded again and 

500 µl of SDS lysis buffer (Millipore, Etobicoke, Ontario, Canada) with protease 
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inhibitor cocktail (Roche, Mississauga, Ontario, Canada) was added to each sample. 

Samples were incubated for 20 mins at 4°C and then sonicated to produce sheared, 

soluble chromatin. The lysates were diluted ten times with ChIP dilution buffer 

(Millipore, Etobicoke, Ontario, Canada) and aliquoted to volumes of 300 µl. Each of the 

aliquots were precleared with protein A/G Plus agarose beads (20 µl, Millipore, 

Etobicoke, Ontario, Canada) and rotated for 2 hours at 4°C. In order to pellet the beads, 

samples were microfuged at 14000 RPM at 4°C, and the supernatant containing the 

sheared chromatin was retained and placed in new tubes. The aliquots were incubated 

with 3 µg of antibodies against LXRα (cat# sc-13068x, Santa Cruz Biotechnology, Santa 

Cruz, California) or acetylated histone H3 (lysine 9,14, cat #05-399, Millipore, 

Etobicoke, Ontario, Canada) and rotated overnight at 4°C. Two aliquots were reserved as 

‘controls’ – one incubated without antibody (‘input’) and another with non-immune IgG 

(Millipore, Etobicoke, Ontario, Canada). Protein A/G Plus agarose beads (60 µl) were 

added to each tube and then rocked for 1 hour at 4°C. The immune complexes were 

collected by centrifugation. The beads containing the immunoprecipitated complexes 

were washed sequentially for 5 mins in wash buffer I (20 mM Tris-HCl, pH 8.1, 2 mM 

EDTA, 0.1% SDS, 1% Triton X-100, 150 mM NaCl), wash buffer II (same as I, except 

containing 500 mM NaCl), wash buffer III (10 mM Tris-HCl, pH 8.1, 1 mM EDTA, 1% 

NP-40, 1% deoxycholate, 0.25 M LiCl), and twice in Tris-EDTA (TE) buffer. The beads 

were eluted with 250 µl elution buffer (1% SDS, 0.1mM NaHCO3 + 20 µg salmon sperm 

DNA (Sigma-Aldrich, Oakville, Ontario, Canada) at room temperature. The elution step 

was repeated once and eluates were combined. Samples were heated at 65°C for 4 hours 

to reverse the crosslinking of the immunoprecipitated chromatin complexes and ‘input 
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controls’ (10% of the total soluble chromatin). Proteinase K buffer was added to each 

sample (50 mM Tris-Hydrochloride (HCl), pH 8.5, 1% SDS, 10 mM EDTA) and 

incubated for 1 hour at 45°C. The DNA was purified by phenol-chloroform extraction 

and DNA was precipitated overnight at -20°C in 100% EtOH containing 10% sodium 

acetate (pH 5.6). The supernatant was removed and remaining pellets were dried. All 

samples and ‘input’ controls’ were resuspended in 50 µl TE buffer prior to PCR analysis. 

Real-time PCR was employed using forward (5’-GCCACGATGACCGGTAGTAA-3’) 

and reverse (5’-GCGTTGCTAGGCAATAGGGT-3’) primers (PE Applied Biosystems, 

Boston, MA, USA) that amplify a -690 to -561 bp region encompassing the published rat 

FAS LXRE site (118). Using serial dilutions of rat liver chromosomal DNA, the primers 

were demonstrated to have equal efficiency in priming to their target sequences (data not 

shown).  

2.3 Statistics  

 All results are expressed as the mean of arbitrary values ± the standard error of 

the mean (SEM). All results from quantitative qRT-PCR, ChIP and western immunoblot 

analysis were evaluated using an unpaired Student’s t test, where a p value of less than 

0.05 was considered significant. 
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CHAPTER 3 : RESULTS 

3.1 Characterization of offspring exposed to maternal nicotine exposure during 

pregnancy and lactation (MNE-PL)  

3.1.1 Weight responses in male offspring exposed to MNE-PL 

 The birth weights of male MNE offspring were recorded throughout development. 

At PND1, the weights of male MNE offspring were significantly lower compared to 

control (p < 0.05) (Fig. 3.1.1A). At PND21, there was no significant difference in birth 

weight between male offspring exposed to nicotine and control offspring (Fig. 3.1.1B). 

By PND180, an increase in body weight from 563±5g to 605±4g (p<0.001) was observed 

in nicotine-exposed male offspring (Fig. 3.1.1C). This increase in weight is noteworthy 

considering that previous studies in this MNE-PL animal model have demonstrated that 

the growth trajectory of nicotine-exposed offspring was significantly enhanced compared 

to control, while nicotine administration had no effect on gestational length, maternal 

food intake, maternal weight gain or litter size  (196, 201).  

3.1.2 Glucose, cholesterol and triglyceride measurements in control and nicotine 

exposed male offspring 

 MNE-PL led to a significant increase in fasting serum triglycerides in male but 

not female offspring at PND180 (Fig. 3.1.2C). Similarly, hepatic triglyceride levels were 

significantly elevated in male offspring compared to control, although female offspring 

were not examined (Fig. 3.1.2D). Analysis of circulating levels of fasting glucose and 

cholesterol were not significantly altered between control and MNE-PL male offspring at 

PND180 (Fig 3.1.2A-B).  
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Fig. 3.1.1 The effect of maternal nicotine exposure during pregnancy and lactation on 

body weight in male PND1 (A), PND21 (B) and PND180 (C) rat offspring. Results are 

expressed as the mean ± SEM. Nicotine effects were determined using a Student’s t test. 

* = (p < 0.05); n = 6/group. 
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Fig. 3.1.2 The effect of MNE-PL on circulating levels of glucose (A), cholesterol (B), 

triglycerides (C) and hepatic triglycerides (D) in PND180 male rat offspring. Results 

are expressed as the mean ± SEM. Nicotine effects were determined using a Student’s t 

test. For data in Figure 3.1.2C, the t test was performed with the data within each gender. 

* = (p < 0.05); n = 7-17/group. 
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3.2 Long-term effects of MNE-PL on hepatic lipogenic genes in offspring  

3.2.1 MNE-PL increased the steady-state mRNA levels of fatty acid synthesis enzymes in 

the liver of male PND180 offspring  

 In order to elucidate the molecular mechanisms underlying the elevated 

triglyceride levels in nicotine-exposed male adult rat offspring, we next examined the 

hepatic enzymes involved in the fatty acid synthesis pathway leading to de novo 

triglyceride production (85, 87, 88). qRT-PCR revealed significant increases (p<0.05) in 

hepatic fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACCα) mRNA, both 

enzymes involved in the initial steps of fatty acid synthesis, in male (Fig. 3.2.1.1A-B) and 

female (Fig. 3.2.1.2A-B) PND180 MNE-PL offspring (85, 87). Interestingly, no 

significant changes in the hepatic steady-state mRNA levels of stearoyl-CoA 

dehydrogenase 1 (SCD-1) were observed in male (Fig. 3.2.1.1C) or female offspring 

(Fig. 3.2.1.2C).  

 However, due to the lack of significant change in circulating triglyceride levels, 

PND180 female offspring were not further investigated in this study. More importantly, 

this model has been previously demonstrated to exhibit early life programming effects in 

a sexually dimorphic manner, which was not the focus of this investigation (195). 
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Fig. 3.2.1.1 The effect of MNE-PL on hepatic steady-state mRNA levels of FAS (A),

ACCαααα (B), and SCD-1 (C) in PND180 male rat offspring. RNA was extracted and 

mRNA levels were assessed using qRT-PCR with primers specific for FAS, ACCα and 

SCD-1. Results are expressed as the mean ± SEM. Nicotine effects were determined 

using a Student’s t test. * = p <  0.05); n = 5-10/group.  
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Fig. 3.2.1.2 The effect of MNE-PL on hepatic steady-state mRNA levels of FAS (A),

ACCαααα (B), and SCD-1 (C) in PND180 female rat offspring. RNA was extracted and 

mRNA levels were assessed using qRT-PCR using primers specific for FAS, ACCα and 

SCD-1. Results are expressed as the mean ± SEM. Nicotine effects were determined using 

a Student’s t test. * = p <  0.05); n = 4-5/group.  
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3.2.2 MNE-PL correspondingly increased the protein levels of hepatic enzymes involved 

in fatty acid synthesis in male PND180 offspring  

 As differences were found in the steady-state mRNA levels of hepatic lipogenic 

genes (e.g. FAS and ACCα), we next performed western immunoblot analysis to 

determine changes at the protein level. At PND180, MNE-PL led to a significant increase 

in FAS protein levels (Fig. 3.2.2.1). Despite changes in mRNA levels, there were no 

corresponding changes in protein levels of ACCα (Fig 3.2.2.2A). Subsequently, the 

inactivated form of ACCα was explored to determine if levels of inactivated ACCα were 

altered due to MNE-PL (203). Western immunblotting revealed no difference in 

phosphorylated-ACCα (Fig. 3.2.2.2B) protein levels between PND180 nicotine exposed 

and control offspring.  

3.2.3 MNE-PL leads to long-term increases in hepatic protein levels of LXRα 

 To begin to decipher the underlying mechanisms behind the increase in FAS 

expression in PND180 male MNE-PL offspring, we next investigated hepatic levels of 

LXRα and SREBP-1c, both regulators of FAS (118, 204). At PND180, MNE-PL led to a 

significant increase in hepatic LXRα protein levels (Fig. 3.2.3A) in male offspring 

compared to control, while no difference was observed in SREBP-1c protein expression 

(Fig. 3.2.3B).  
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Fig. 3.2.2.1 MNE-PL leads to an increase in FAS protein levels in PND180 male 

offspring. Protein was extracted and the expression of FAS was measured using western

immunoblot analysis. The protein levels were quantified using densitometry and 

normalized to the protein levels of a housekeeping protein, β-actin. Results are expressed 

as the mean ± SEM. Nicotine effects were determined using a Student’s t test. * = p < 

0.05); n = 6-7/group.   
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Fig. 3.2.2.2 Exposure to nicotine during pregnancy and lactation does not 

influence ACCαααα (A) and p-ACCαααα (B) protein levels in PND180 male offspring. 

Protein was extracted and the expression of ACCα and p-ACCα was measured 

using western immunoblot analysis. The protein levels were quantified using 

densitometry and normalized to the protein levels of a housekeeping protein, β-

actin. Results are expressed as the mean ± SEM. Nicotine effects were determined 

using a Student’s t test. * = p < 0.05); n = 5-7/group.  
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Fig. 3.2.3 MNE-PL leads to an increase in hepatic LXRαααα protein levels in 

PND180 male rat offspring. Protein was extracted and the expression of LXRα

(A) and SREBP-1c (B) was analyzed using western immunoblot analysis. The 

protein levels were quantified using densitometry and normalized to a 

housekeeping protein, β-actin. Results are expressed as the mean ± SEM. * = p < 

0.05; n= 5-7/group. 
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3.2.4 MNE-PL leads to increased LXRα binding to the putative LXRE on the FAS 

promoter in PND180 male rat offspring  

 The increase in LXRα protein expression suggests that LXRα may be facilitating 

the increase in FAS protein and mRNA expression in adult male offspring exposed to 

nicotine during pregnancy and lactation. To explore this further, we employed chromatin 

immunoprecipitation (ChIP) to examine the in vivo binding of LXRα to its putative LXR 

binding element (LXRE) on the proximal rat promoter (-669 to -665 bp) of FAS (118). 

Real-time primers were designed to surround the LXRE of the FAS gene and were 

demonstrated to equally amplify their target sequences over a range of chromatin 

concentrations (data not shown). While not significant (p=0.13), male PND180 MNE-PL 

offspring in this small samples size (n=5) were observed to have increased LXRα binding 

at the putative LXRE of the FAS promoter (Fig. 3.2.4). Nonimmune IgG displayed 

negligible binding compared to LXRα binding to the FAS promoter.  
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Fig. 3.2.4 MNE-PL increases LXRαααα binding to the LXRE of the FAS promoter 

in the liver of PND180 male offspring. The in vivo binding of LXR α  to the hepatic 

LXRE of the FAS promoter in male rat offspring at PND180 was assessed by 

chromatin immunoprecipitation. Briefly, cross-linked chromatin was 

immunoprecipitated using an antibody specific for LXR α  and the relative abundance 

of a region surrounding the LXRE (-669 to -655 bp) of the FAS promoter was 

quantified using qRT-PCR. The relative level of immunoprecipitated DNA was 

normalized to total genomic DNA for each sample. The effect of nicotine was 

determined using a Student’s t test. Results are expressed as the mean ± SEM. * = p 

< 0.05; n= 5/group.  
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3.3 Epigenetic alterations of the hepatic fatty acid synthesis pathway in adult rat 

offspring due to MNE-PL  

3.3.1 MNE-PL induced transcriptional activation of hepatic FAS expression is associated 

with an increase in the acetylation of histone H3 [K9,14] surrounding the LXRE of 

the FAS promoter region in PND180 male offspring  

 Since LXRα has been demonstrated to enhance the acetylation of histone H3 

[K9,14] to increase hepatic FAS transcription (152), we next employed ChIP to 

investigate if chromatin remodeling could be a factor influencing the observed increase in 

FAS mRNA and protein levels in MNE-PL offspring. The acetylation of histone H3 [K9, 

14] is well known to be associated with chromatin activation (136). ChIP revealed that 

male MNE-PL offspring in this small samples size (n=5) were trending towards an 

significant increase (p=0.09) in the acetylation of histone H3 [K9,14] surrounding the 

putative LXRE (-669 to -655 bp) of the FAS promoter (Fig. 3.3.1) (118). Nonimmune 

IgG displayed negligible binding compared acetylation of histone H3 [K9,14] 

surrounding the FAS promoter.  

3.3.2 The effects of MNE-PL on the steady-state mRNA levels of histone modifying 

enzymes (Sirt-1 and p300) in the livers of PND180 male offspring  

 As differences were found in the levels of acetylation of histone H3 [K9, 14] 

surrounding the putative LXRE of the FAS promoter, we investigated possible 

mechanisms responsible for the alterations in the epigenetic status of adult male 

offspring. qRT-PCR revealed no difference in mRNA expression of Sirt-1 (Fig. 3.3.2A) 

or p300 (Fig. 3.3.2B), known histone deacetylases and acetyltransferases, respectively 

(141, 145).  
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Fig. 3.3.1 MNE-PL increases the acetylation of histone H3 [K9,14] 

surrounding the LXRE of the FAS promoter in the liver of PND180 male 

offspring. Briefly, cross-linked chromatin immunoprecipicated using an antibody 

specific for acetylated histone H3 [K9,14] was isolated and the relative abundance 

of a region surrounding the LXRE (-669 to -655 bp) of the FAS promoter was 

quantified using qRT-PCR. The relative level of immunoprecipitated DNA was 

normalized to total genomic DNA for each sample. Results are expressed as the 

mean ± SEM. Nicotine effects were determined using a Student’s t test. * = p < 

0.05; n= 5/group.  
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Fig. 3.3.2 MNE-PL does not influence hepatic steady-state mRNA levels of 

Sirt-1 (A) and p300 (B) in PND180 male rat offspring. RNA was extracted and 

mRNA levels were assessed using qRT-PCR with primers specific for Sirt-1 and 

p300. Results are expressed as the mean ± SEM. Nicotine effects were determined 

using a Student’s t test. * = p <  0.05); n = 5/group. 
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3.4 Direct effects of MNE-PL on hepatic fatty acid synthesis in offspring  

3.4.1 The effects of MNE-PL on hepatic fatty acid synthesis in PND1 and PND21 male 

offspring  

 Earlier developmental time points in offspring were examined in order to 

determine whether MNE-PL directly leads to the elevations in triglyceride levels 

observed in male offspring at PND180. qRT-PCR analysis found no differences in FAS, 

ACCα and SCD-1 mRNA levels between PND1 control and MNE offspring (Fig. 

3.4.1.1A-C).  

 Similarly, analysis of FAS, ACCα and SCD-1 mRNA levels via qRT-PCR 

revealed no difference in PND21 male control and nicotine exposed offspring (Fig. 

3.4.1.2A-C). Importantly, the PND21 time point represents the longest period of exposure 

(21 days) to nicotine in offspring.  
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Fig. 3.4.1.1 MNE-PL does not influence hepatic steady-state mRNA levels of ACCαααα

(A), FAS (B), and SCD-1 (C) in PND1 male rat offspring. RNA was extracted and 

mRNA levels were assessed using qRT-PCR using primers specific for FAS, ACCα and 

SCD-1. Results were expressed as the mean ± SEM. Nicotine effects were determined 

using a Student’s t test. * = p <  0.05); n = 2-5/group. 
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Fig. 3.4.1.2 MNE-PL does not influence hepatic steady-state mRNA levels of ACCαααα  

(A), FAS (B), and SCD-1 (C) in PND21 male rat offspring. RNA was extracted and 

mRNA levels were assessed using q-RT-PR using primers specific for FAS, ACCα and 

SCD-1. Results are expressed as the mean ± SEM. Nicotine effects were determined 

using a Student’s t test. * = p <  0.05); n = 4-5/group. 
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CHAPTER 4 : DISCUSSION 

4.1 Clinical relevance of the study  

 In this study I present evidence that MNE-PL leads to hypertriglyceridemia in 

PND180 male rat offspring. My data suggests that this effect is due to increased de novo 

hepatic triglyceride synthesis. Specifically, I demonstrated that FAS expression was 

enhanced due to increased LXRα protein levels and binding to the LXRE of the FAS 

promoter in PND180 male MNE-PL offspring. This increase in LXRα binding at the FAS 

promoter was associated with enriched histone H3 acetylation [K9,14] at the LXRE site, 

previously shown to lead to FAS transcriptional activation (152). Given the well-

established link between an adverse in utero environment and the development of 

metabolic dysfunction long-term (158, 205), this study sheds light on possible molecular 

mechanisms that mediate the programming of obesity in children exposed to smoke in 

utero (8). My study also raises questions regarding the safety of NRT during pregnancy 

and long-term consequences for offspring.  

4.2 Examining the mechanisms of nicotine action on hepatic fatty acid synthesis  

 In this thesis, I investigated the influence of MNE-PL on the hepatic fatty acid 

synthesis pathway. I present evidence that MNE-PL leads to elevated levels of hepatic 

and circulating triglyceride levels, concomitant with alterations to fatty acid biosynthetic 

enzyme expression in PND180 male offspring. MNE-PL did not affect circulating 

glucose or cholesterol levels in offspring. My findings support human studies that 

demonstrated adult women exposed to tobacco in utero exhibit elevated triglyceride 
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levels in adulthood (13). Livers of PND1 and PND21 MNE-PL offspring were examined 

to determine whether nicotine directly augments triglyceride levels. These earlier 

developmental time points represent different windows of direct nicotine exposure in 

fetal and neonatal life. PND1 and PND21 MNE-PL offspring did not exhibit any 

significant differences in the expression of FAS, ACCα, or SCD-1 compared to control 

offspring. Consequently my results suggest that elevated triglycerides were not a direct 

result of nicotine exposure, as we would have expected to observe alterations in target 

gene expression at weaning, following the longest window of direct nicotine exposure. 

Moreover, only a subset of primary human hepatic stellate cells express the neuronal 

subunits of nAcHR (α3,α6, α7, β2 and β4) (206). Together, given the lack of nAcHR 

subunit expression in hepatocytes and unaltered fatty acid synthesis in early life, it is 

highly conceivable that nicotine induced alterations in long-term fatty acid synthesis and 

triglyceride levels are a result of indirect mechanisms.  

4.3 Possible mechanisms underlying the effect of MNE-PL on long-term 

programming of hypertriglyceridemia in offspring 

 In this study, MNE-PL resulted in significantly heavier male offspring compared 

to control offspring at PND180. These results support findings from human studies that 

have repeatedly demonstrated an increase in the risk of obesity in children (ages 2 – 33 

years old) exposed to smoking during pregnancy regardless of parental socioeconomic 

background, infant feeding patterns and gestational weight gain (8, 11, 207-210). My rat 

model suggests that nicotine alone leads to the development of obesity and elevated 

triglycerides in children exposed to smoking in utero (209). Despite being heavier in later 

life, I found that MNE-PL offspring at PND1 weigh less compared to control offspring. 
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Children of smoking mothers also shared this surprising characteristic, as exposed 

children are at higher risk for being low birth weight compared to unexposed offspring 

(208, 211, 212). Further studies demonstrate that fetal growth restriction is more likely 

responsible for low birth weight in children rather than preterm delivery (208, 211-213). 

Other animal models of MNE have also proposed that nicotine alone can impair growth 

in offspring. It was found that nicotine injections of 2mg/kg/day during gestation in rats 

led to lower average fetal weight in utero compared to control fetuses (214). Similarly, 

rat offspring exposed to 6mg/kg/day of nicotine during early postnatal life gained 

significantly less weight per day compared to control offspring (215). However, these 

nicotine-exposed pups caught up in size by PND18. While these studies suggest that 

nicotine alone can impair fetal growth, it is important to note that these animal models 

utilized higher concentrations of nicotine compared to the model of MNE-PL used in my 

study. Therefore, future studies should closely monitor the growth of MNE-PL offspring 

to ascertain whether a moderate dosage of nicotine for a longer period of time lead to 

comparable growth impairments in offspring.  

 To resolve the two extreme phenotypes that are observed in response to nicotine 

exposure in perinatal life, my data suggests that MNE-PL offspring undergo catch up 

growth. A study  has demonstrated that babies of smoking mothers tended to be lighter at 

birth but caught up in weight to children of non-smoking mothers by 12 months of age 

(216). Specifically, male children caught up at a faster rate compared to female children 

(216). Furthermore, children that were born small and were able catch up in bodyweight 

had higher percentages of body fat and increased BMI in early life compared to other 

children (176). Therefore, catch up growth may program offspring to overshoot normal 
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growth trajectories leading to a higher likelihood of developing characteristics that are 

predictive of adult obesity (176). Although the mechanisms by which children are able to 

catch up in growth are largely unknown, it has been postulated that low leptin levels in 

low birth weight babies may signal for greater food intake (176). The connection between 

catch up growth and differences in nutritional intake has been investigated by comparing 

breast-fed and formula fed preterm babies. Formula fed babies were found to experience 

high neonatal growth during the first 2 weeks following birth and this was associated 

with higher markers of insulin resistance and an atherogenic lipoprotein profile that was 

observed up to 16 years later (217, 218). Since catch up growth in babies was found 

irrespective of birth weight, researched proposed that the programming of metabolic 

outcomes largely occurs antenatally. Therefore in this study, MNE-PL may impair fetal 

development leading to subsequent catch growth and the programming of 

hypertriglyceridemia in offspring.  

4.4 Catch up growth and ER stress 

 Interestingly, our laboratory has demonstrated that rat offspring exposed to an 

adverse in utero environment followed by rapid catch up growth in postnatal life, exhibit 

increased ER stress (219). Various insults such as glucose deprivation, changes in 

oxidation-reduction balance, infection and development of secretory cells can all lead to 

the misfolding of proteins and initiate the unfolded protein response (UPR) (220, 221). 

The UPR response helps cells cope with an overloaded ER by decreasing translation, 

increasing efflux and stimulating the degradation of proteins (220). The UPR leads to the 

phosphorylation of the eukaryotic initiation factor 2α (eIF2α), which leads to the 

attenuation of further translation (220). It also increases chaperone protein levels (e.g. 
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glucose regulated proteins Grp78 and Grp94) to facilitate increased folding and induces 

the splicing of the X-box binding protein (Xbp-1) to increase protein degradation (220). 

ER-stress induced apoptosis is activated if a cell is overwhelmed by the amount of  

misfolded protein (221). Specifically, our laboratory has demonstrated that postnatal 

catch up growth is associated with elevated levels of ER chaperone protein Grp78 and 

enhanced phosphorylation of eIF2α long-term (219). Since our MNE-PL model appears 

to lead to catch up growth in offspring, future studies should investigate whether hepatic 

ER stress pathways are activated in conjunction with alterations in fatty acid and 

triglyceride synthesis.  

 The role of ER stress in models of catch up growth is an attractive mechanism to 

explain in part, the underlying mechanisms of fetal programming. Indeed, studies have 

already postulated that obesity induces hepatic insulin resistance through elevated ER 

stress signaling in the liver of rodent models (222, 223). Notably, my preliminary data in 

PND180 male offspring exposed to MNE-PL, exhibited increased Grp78 protein levels 

(Fig. 4.4).  

 Yet, the involvement of ER stress in the long-term programming of 

hypertriglyceridemia in nicotine-exposed offspring has not been fully elucidated. 

Although nicotine did not have a direct effect in my MNE-PL model, it would be 

interesting to assess if nicotine could directly induce ER stress in PND1 or PND21 

offspring, or if ER stress is activated due to catch up growth. It is noteworthy that one 

study has demonstrated that antagonism of LXRα protects against steatosis by decreasing 

ER stress (224). This study presents a novel mechanism by which ER stress mediates the 
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development of liver pathology through LXRα activation. Given the increase in LXRα in 

MNE-PL offspring and the association between ER stress and catch up growth, future 

studies will evaluate ER stress markers in the liver of PND180 male offspring. It is 

plausible that nicotine induced ER stress may be causing permanent changes in hepatic 

function via the aberrant activation of LXRα in MNE-PL offspring.  

 

 

 

 

 

 

Fig. 4.4 MNE-PL leads to increased Grp78 protein expression in PND180 male 

offspring. Protein was extracted and the expression of Grp78 was measured using 

western immunoblot analysis. The protein levels were quantified using 

densitometry and normalized to the protein levels of a housekeeping protein, β-

actin. Results are expressed as the mean ± SEM. Nicotine effects were determined 

using a Student’s t test. * = p < 0.05); n = 8/group.   



www.manaraa.com

60 

 

4.5 Molecular mechanisms underlying elevated triglycerides in adult MNE-PL 

offspring 

 The three main sources of free fatty acids used for triglyceride synthesis in the 

liver include de novo, circulating, and dietary (87). Human and animal studies have both 

demonstrated that alterations in fatty acid synthesis lead to impairments in triglyceride 

homeostasis (87, 115, 118, 225). In the present study, I have demonstrated elevations in 

the steady-state mRNA levels of FAS and ACCα in the liver of male MNE-PL offspring 

at PND180. MNE-PL offspring also exhibited a corresponding increase in FAS protein 

expression suggesting that alterations in FAS play a central role in de novo triglyceride 

synthesis. Studies in rodent models of obesity associated with elevated plasma 

triglyceride levels, have similarly demonstrated an increase in hepatic FAS protein 

expression (226, 227). Moreover, de novo fatty acid synthesis is considered a dynamic 

process as human studies have shown that the rate synthesis can be drastically altered in 

various disease states (228, 229). Taken together, these data suggest that nicotine 

exposure may permanently increase triglyceride levels, in part, via a FAS-dependent 

pathway.  

 To date, I have only examined de novo triglyceride synthesis as the main source 

for elevated triglycerides observed in PND180 MNE-PL offspring. However, other 

mechanisms could be contributing to the development of hypertriglyceridemia in nicotine 

exposed offspring including differences in food consumption and adipose tissue 

distribution. Since high carbohydrate diets have been shown to increase de novo fatty 

acid synthesis and plasma triglyceride levels in both rodents and humans, future studies 

should closely monitor post-weaning food consumption in nicotine-exposed offspring 

(230-232). In addition, obtaining adipose tissue from MNE-PL offspring will also be 
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pursued in later studies, considering elevated amounts of body fat is a predictor of 

triglyceride levels in humans (233).  

 Given the increase in expression of fatty acid biosynthetic genes, I next 

investigated changes in regulatory mechanisms. The expression of FAS is under the 

direct control of various transcription factors including LXRα (-669 to -655 bp), SREBP-

1c (-71 to -54 bp), and ChREBP (-7214 to -7190 bp) (117, 119, 234). My study 

determined that there were significantly higher levels of LXRα protein in MNE-PL 

offspring compared to control offspring. In parallel, unpublished data from our laboratory 

has demonstrated that following short-term neonatal exposure to an LXR agonist leads to 

higher triglycerides levels in rat offspring (Fig. 4.5). Models involving treatment with 

LXRα agonists have demonstrated similar elevations in plasma triglycerides along with 

an induction of hepatic FAS expression (118). Likewise, LXR deficient mice treated with 

LXRα agonist do not exhibit an increase in triglyceride levels (204). Therefore, LXRα 

activation is imperative to FAS activation and triglyceride synthesis.  
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Fig. 4.5 Treatment with LXR agonist, GW3965, during pregnancy in rats led 

to increased circulating triglyceride levels in offspring. Results are expressed as 

the mean ± SEM. LXR agonist effects were determined using a Student’s t test. * = 

(p < 0.05); n = 6-9/group.  
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 To determine whether the increase in LXRα and its target, FAS, were 

functionally related, ChIP experiments were carried out to measure in vivo binding of 

hepatic LXRα to the promoter of FAS in PND180 male offspring. ChIP studies revealed 

increased LXRα binding surrounding the putative LXRE (-669 to -655 bp) of the FAS 

promoter (117). My results suggest that an elevation in hepatic LXRα expression 

mediates the transcriptional activation of FAS. Remarkably, other models of fetal 

programming have demonstrated that LXR and LXR-target genes are susceptible to 

permanent programming changes (153, 155, 235). Thus, it is conceivable that nicotine-

mediated changes in triglyceride levels are occurring in part through prolonged or even 

permanent increase in FAS activation. It would be interesting to further ascertain the role 

of LXRα in modulating permanent elevations in FAS expression by undertaking in vitro 

studies. In vitro studies involving the treatment of hepatocytes with LXRα antagonists 

such as piperine, followed by the analysis of FAS expression and ChIP analysis would 

help confirm whether permanent FAS activation in MNE-PL offspring is attributed 

directly to LXRα (224).  

 While it has been established that LXRα plays a large role in the regulation of 

FAS, other regulatory pathways should be considered in future studies. SREBP-1c is a 

transcription factor that is activated in its cleaved form and inhibited in the presence of 

sterols (119, 236, 237). Similar to LXRα, SREBP-1c can directly activate certain fatty 

acid biosynthetic enzymes including FAS, ACCα and SCD-1 (119, 238, 239). In my 

study I found no difference in SREBP-1c protein expression between PND180 MNE-PL 

and control offspring. My findings support previous studies demonstrating augmented 
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triglyceride levels in obese mice despite diminished SREBP-1c expression (240). For this 

reason, SREBP-1c is considered an auxiliary regulator of fatty acid synthesis that is under 

the direct control of LXRα (115, 236). Future studies could investigate the carbohydrate-

responsive element binding protein (ChREBP). ChREBP is a transcription factor from the 

same family as SREBP-1c that heterodimerizes with the protein Max-like protein X 

(Mlx) (241). It binds to carbohydrate response elements (ChoRE) of glucose responsive 

targets found throughout the de novo lipogenic pathway (241, 242). ChREBP is 

ubiquitously expressed, with the highest expression found in the liver, brown and white 

adipose tissues, small intestine, kidneys and muscle (242). ChREBP knock-out mice 

exhibited lower levels of hepatic FAS and ACCα and a 65% decrease in fatty acid 

synthesis rates compared to control mice. Importantly, there were no changes in SREBP 

levels, meaning that the loss of ChREBP was not mediated via SREBP-1c (242). 

Consequently, ChREBP is another independent regulatory mechanism that should be 

considered for future investigation in adult MNE-PL male offspring.  

4.6 The role of epigenetics in the fetal programming of hypertriglyceridemia in adult 

MNE-PL offspring  

 In this present study, I have demonstrated an increase in acetylation of histone H3 

surrounding the LXRE of the hepatic FAS gene in PND180 MNE-PL offspring. My 

findings suggest that maternal nicotine exposure leads to long-term posttranslational 

histone modifcations that facilitate increased transcription of FAS. While my results 

demonstrate changes in chromatin remodeling due to MNE-PL, the effect of nicotine on 

epigenetic changes is virtually unknown. In vitro studies in primary neuronal cortical 

cells and primary human lymphocytes have shown that nicotine exposure leads to a more 
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transcriptionally ‘permissive’ chromatin environment through alterations in the 

expression of HMTs such as GLP, G9a and Setdb1 (243). Similar histone modifications 

were observed in vivo. A single intraperitoneal injection of 3mg/kg of nicotine was able 

to elicit measurable changes in mouse cortical extracts 6 hours following injection (243).  

It would be interesting to determine whether measurable changes occur in methylation 

and HMT expression in my model of short-term neonatal exposure to nicotine. Future 

studies should investigate all developmental time points  (PND1, 21 and 180) in MNE-PL 

offspring, to examine whether MNE results in posttranslational histone modifications that 

precede the development of long-term hypertriglycerdemia in offspring.  

 Lastly, mRNA levels of Sirt-1 and p300, known histone acetyltransferases and 

histone deacetylases, respectively, were measured in order to understand the mechanisms 

underlying nicotine-induced epigenetic modifications (141, 145). While MNE-PL does 

not influence Sirt-1 or p300 mRNA expression in PND180 male offspring, I was only 

able to measure the indirect action of these enzymes. In future studies, I would like to 

employ a similar ChIP study to investigate changes in the in vivo binding of Sirt1 or p300 

to the FAS promoter directly. 

4.7 Early folic acid intervention in the prevention of permanent nicotine-induced 

disease outcomes in rat offspring 

 Since the development of the liver continues during early postnatal life, it is 

plausible that intervention during perinatal life could help reverse or prevent nicotine-

induced hypertriglyceridemia in adulthood (244). For example, short-term injections of 

Exendin-4 in neonatal life have been found to prevent oxidative stress, impaired 
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hepatic glucose production and hepatic insulin resistance normally exhibited in 

intrauterine growth restricted (IUGR) rat offspring (245).  

 Interestingly, folic acid supplementation has been demonstrated to reduce long-

term hypertriglycidemia in IUGR piglets via increased methylation of the promoter of 

LXR-target genes (246). Folate, and its synthetic form, folic acid, act as essential 

cofactors for biochemical reactions, namely the formation of S-adenosylmethionine, the 

main methyl donor for methylation (247).  A clinical study has demonstrated that 

differences in DNA methylation patterns can be detected in children exposed to smoke in 

utero (248).  Futhermore, folic acid has been shown to alleviate ER stress (249, 250). 

Taken together, it is conceivable that additional supplementation of folic acid may 

prevent adult onset hypertriglyceridemia in offspring exposed to nicotine through the 

prevention of aberrant epigenetic modulation and/or reduction of ER stress.  
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Future animal studies will investigate whether dietary folate supplementation can prevent 

or reduce nicotine-induced hypertriglyceridemia. I will administer nicotine alone, and in 

combination with folic acid to pregnant rats at clinically relevant doses to female rats 

during pregnancy and lactation (Fig. 4.7). I will evaluate whether folic acid 

supplementation prevents hypertriglyceridemia and/or activation of LXRα target genes in 

adult rat offspring. I will also assess whether folic acid supplementation reduces ER 

stress in liver of PND180 offspring.  

 

 

Fig. 4.7 Schematic overview of animal model of MNE-PL and folic acid 

intervention  
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